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Abstract 

It is shown that a commutative noetherian ring is a finite direct sum of Dedekind rings and 
artinian uniserial rings if and only if every module of finite length is selfdual. A module of finite 
length is said to be selfdual if it is isomorphic to its dual with respect to the minimal injective 
cogenerator. @ 1998 Elsevier Science B.V. All rights reserved. 
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It is well-known that every finite abelian group is isomorphic to its character group. 

In this short note we show that this property characterizes Dedekind rings among com- 

mutative noetherian domains. For a commutative ring R we denote by E the minimal 

injective cogenerator of R, i.e., the injectivc hull of the direct sum of all isomorphism 

types of simple R-modules. As in the case of finite abelian groups, the character mod- 

ule M* of an R-module M is defined as the group ffomR(A4,E) which is also an 

R-module in the trivial way. Since every module M of finite length can be considered 

as a module over the factor ring I?= R/(r E R 1 rM = 0) which is obviously a finite 

direct sum of local artinian rings, in view of Matlis duality M is reflexive, i.e., it is 

isomorphic to its second character module. Inspired by the above remark on character 

groups of abelian groups and the duality of modules of finite length we introduce the 

following notion. 

Definition. A module M is said to be self-dual if it is isomorphic to its character 

module. 
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Recall that a module is said to be uniseriul if its submodules are totally ordered by 

inclusion. With the help of this notion we are now in position to state and to prove 

the main result. 

Theorem. A commutative noetherian ring R is u jnite direct sum of uniserial artinian 

rings and Dedekind rings if and only f every module of jinite length is self-dual. 

Proof. Assume that R is a finite direct sum of uniserial artinian rings and Dedekind 

rings. If an R-module M is of finite length, then by [2, Exercise 2, p. 2161 or in view 

of [2, Theorem 2.5.1, p. 2441 the factor ring I? = R/Z is a finite direct sum of uniserial 

artinian rings where I is the annihilator ideal of M. Therefore, M is a finite direct sum 

of uniserial modules of finite length. Consequently, we can assume that R is a uniserial 

artinian ring and A4 is also a uniserial R-module. Hence M* = Hom,q(M,l?). Since both 

M and M* are essential extensions of the simple R-module, they are embedded into 

R and hence they are isomorphic by the equality of the lengths of M and M*. 

Conversely, assume that every module of finite length is self-dual. Let &? be any 

maximal ideal of R and U be the injective hull of the simple R-module R/&Y. To show 

that U is uniserial, it is enough to prove that the factor ring A = R/M2 is uniserial. 

Let V be the annihilator of M2 in U. Since V is the dual of A, V is isomorphic 

to A which implies immediately that M/M2 is simple. Thus, A is a uniserial ring and 

hence U is also uniserial. If U is of finite length, then U = Rx for some x E U. Since 

U is also the minimal injective cogenerator of the localization R.b* by Theorem 18.4 

in [4], we obtain U = Rx = RJX, i.e., R.g Z U. Since the kernel I of the canonical 

ring homomorphism from R into R, N is the ideal {r E R 1 3s @ A’ : rs = 0) and R is a 

noetherian ring, there are elements r1, . . , r,, E R such that I = c Rri. For each r; there 

is ai E R\Jt’ with riai = 0. Put a = n a,. Since .K is a prime ideal, a $! ,K and ria = 0 
for all indices i. Hence 

i.e., I = annR a. Therefore U = Rx = R.MX E Ra. Consequently, Ra C R is an injective 

R-module. This shows that R is a direct sum of the ring Ra and the ring S where 

Ra is a uniserial artinian ring and S satisfies also the condition that every S-module 

of finite length is self-dual. Since R is a noetherian ring, the above result shows that 

there are only finitely many maximal ideals ,& such that the injective hull of the 

simple module R/&L’ is a uniserial module of finite length. Therefore, R is a finite 

direct sum of uniserial artinian rings and the ring T such that the injective hulls of 

simple T-modules are uniserial artinian modules of infinite length. This implies that 

for every maximal ideal ,& of T the localization TR is a domain, in fact it is DVR. 

Consequently, by Theorem 168 in [3], T is a finite direct sum of domains. Hence, T 

is a finite direct sum of Dedekind domains which completes the proof. 0 

Corollary. A noetherian domain is a Dedekind ring if and only if modules of jinite 
length are self-dual. 
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Remark. It might be interesting to describe all rings satisfying the conditon that mod- 

ules of finite length are self-dual. This class of rings contains, for example, all von 

Neumann regular rings or more generally all locally noetherian rings, i.e., rings such 

that their localizations at maximal ideals are noetherian. Moreover, all rings such that 

their maximal ideals are idempotent, belong to this class, too. 
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